Considerations for virtual surgical planning and simulation in orthognathic surgery—a narrative review
Review Article

正颌外科虚拟手术规划与模拟的思考——叙述性综述

Tae-Geon Kwon, Sung-Tak Lee, So-Young Choi, Jin-Wook Kim

Department of Oral and Maxillofacial Surgery, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea

Contributions: (I) Conception and design: TG Kwon; (II) Administrative support: SY Choi, JW Kim; (III) Provision of study materials or patients: TG Kwon, SY Choi, JW Kim; (IV) Collection and assembly of data: TG Kwon, ST Lee, JW Kim; (V) Data analysis and interpretation: TG Kwon, ST Lee, SY Choi; (VI) Manuscript writing: All authors; (VII) Final approval of manuscript: All authors.

Correspondence to: Tae-Geon Kwon, DDS, PhD. Department of Oral and Maxillofacial Surgery, School of Dentistry, Kyungpook National University, 2177 Dalgubeol-daero, Jung-gu, Daegu 41940, Republic of Korea. Email: kwondk@knu.ac.kr.

背景与目的:虽然使用 3D 虚拟手术规划 (virtual surgical planning, VSP) 进行正颌手术有很多好处,但关于 VSP 和模拟过程中可能发生的误差或错误的报告却很少。这篇叙述性综述更新了VSP的相关知识,并讨论了VSP在正颌外科中的一些注意事项和考量。

方法:在这篇综述中,Pubmed数据库检索利用下列主题词:Orthognathic Surgery, Computer-assisted, computer-aided, virtual planning, CAD-CAM。检索日期从2000年1月到2020年4月,选择全文文献进行综述。

主要内容和发现:VSP的应用能可视化不同骨段间关系、骨段间重叠、干扰以及明显的骨段间隙。可以术前预判植骨的部位和大小。此外,进行术前规划可以无时间限制。由于大多数 VSP 由外包公司执行,因此 VSP 的质量保证取决于第三方,有时在界定手术结果时无法明确责任。为了提高 3D 规划和模拟的精度,外科医师需要明确意识到 VSP 不能确保手术结果成功。每一步都可能产生误差,例如将 3D 牙模融合到头骨数据、骨段识别和移动、计算机辅助手术模拟、𬌗板制作、3D 图像叠加以及虚拟空间中咬合关系的确定。

结论:彻底了解VSP的误差来源可使通过VSP进行的正颌手术获得良好的手术效果。

关键词:虚拟手术规划 (VSP)模拟;正颌外科;三维(3D)


Received: 20 August 2020; Accepted: 11 September 2020; Published: 10 November 2020.

doi: 10.21037/fomm-20-54


前言

对于面部畸形(如错𬌗畸形)患者,手术计划和手术结果预测是成功进行正颌手术术前准备工作中最重要的内容。根据术前确定的手术计划,需要正确移动截骨块和牙列到所需的3D 空间位置中。因此,要强调术中精确控制和精准地移动截骨块。目前,计算机辅助虚拟手术规划(VSP)已在各学科中广泛应用,并常常用于口腔颌面外科,特别是在正颌手术领域[1-4]。与以往的经典二维规划或颌架-模型外科[4,5]相比,三维VSP 被广泛接受并成为主流的治疗规划程序。VSP用于正颌手术的准确性和可行性在文献[6-9]中有详细记载。使用计算机进行手术规划,可以对上颌骨或下颌骨进行虚拟分割,并可以重新定位截骨段,能够根据计划进行水平、垂直和横向六个方向精确移动。同时,可以可视化骨段间关系、骨段重叠或干扰,以及明显的骨段间隙,可以提前预判需要植骨或去骨的部位。另一个优点是,术前规划可以在不受限制的时间内进行。

技术进步不仅使手术能够虚拟规划,而且能够在术中利用由 3D 计算机辅助设计/制造 (CAD/ CAM) 系统制作的手术导板。尽管存在一些小的技术差异,但每个研究所都制定了 3D VSP 的技术流程。总体而言,该流程由几个步骤组成:

  • 获取计算机体层扫描 (CT)图像或锥形束计算机体层扫描 (CBCT) 图像的面部结构和扫描的上下颌牙列模型;
  • CT图像分割、融合以及与牙列3D图像叠加,用于虚拟规划;
  • 根据诊断和外科医师的手术计划实施虚拟规划;
  • 利用CAD/CAM制作手术导板;
  • 手术导板的术中应用——手术规划的术中转移;
  • VSP的术后验证与实际术后结果的比较[1,10,11]

最近,手术导板正在与预成型钛板[12]或患者特定的3D 打印钛板[13]一起使用,彼时,用或不用中间𬌗板都可[14]

由于上颌骨的部分截骨块移动的角度和方向非常复杂,因此3D规划和模拟对于精确的手术设计非常有帮助。先前的研究表明,VSP在上颌骨整体截骨[15-18]或分块截骨[19-24]中的准确性是可接受的。许多以前的文献都强调了使用不同软件和硬件的 3D 规划系统的准确性。然而,对3D技术的热情有时会低估或忽略虚拟规划中潜在的误差来源。此外,对正颌手术虚拟规划系统综述表明,尽管没有报告利益冲突,但由于3D软件开发应用可能导致成本增加[7],一些研究中存在利益偏倚的风险。

在这篇叙述性综述中,研究建议纳入定量数据以减少发表的偏倚。由于VSP在口腔颌面部应用,所以我们也回顾了有关VSP的重要概念或解释手术过程的文献。

虽然在正颌手术中使用3D VSP有很多好处,但关于VSP和模拟过程中可能遇到的潜在误差的报道很少。这篇综述的关键问题是:(1)VSP过程中的哪个环节可能是误差的来源?(2)内部VSP与外包VSP有何不同?为了回答这两个关键问题,本综述旨在更新VSP的相关信息,并讨论正颌手术VSP的各种注意事项及考量。

我们根据综述清单提供以下文章。(Available at https://fomm.amegroups.org/article/view/10.21037/fomm-20-54/rc


方法

在PubMed数据库搜索以下关键词:正颌外科,计算机辅助,计算机帮助,虚拟规划,CAD-CAM。包括2000年1月至2020年4月发表的英文文献。选择全文研究并进行综述。


讨论

计算机化手术规划在正颌手术中的应用优势

VSP利于治疗效果的定量分析,为正颌手术提供更高的准确性[6]。因此,正颌手术的计算机化规划和模拟可以使外科医师进行更准确、更高效的正颌手术[8,25]。基于VSP进行正颌手术具有多种优点。

首先,VSP使对各种畸形进行更准确和定量的分析成为可能,这是之前2D头影测量分析无法实现的。正颌手术的计算机化规划可以使外科医师对手术区域的解剖结构进行全面的评估。对于不对称患者,VSP可用于诊断术前问题,预测术后截骨段的3D位置,进而预测术后仍会存在的不对称[26]。与此同时,也可以直观地看到术后牙齿去代偿的需要,并可以提前将过矫正的程度反映在VSP中[1]

VSP的另一个优点是可以进行微创手术。VSP中的截骨线与真实术中截骨位置几乎相同。在有问题的病例中,多次重复虚拟手术模拟以获取最佳效果可以最大限度地减少手术失误,并允许外科医师准确地重现手术规划。同时,外科医师可以预测术中潜在的问题来减少并发症。

此外,住院医师可以参与手术规划环节,对正在规划的手术有更深入的理解。患者可以充分了解手术信息,更容易理解手术并发症。VSP在病人和医学生的教育中非常重要。

手术效果的验证可以通过术后评估进行。由于所有手术规划和术后效果相关的数据都存储在数据库中,这些不断累积的定量随访数据将有助于改进治疗方案或为更进一步治疗实现技术创新。

计算机辅助规划和手术应用中的潜在的误差来源

由于虚拟手术或颌架模型外科中模拟的上颌位置对实际手术效果影响较大,因此中间𬌗板非常重要,这一核心步骤可以决定手术的准确性(图1)。传统的基于颌架的模型外科有许多步骤存在很高的误差概率。取印模、咬合记录、面弓转移、上颌重新定位和在颌架上制作𬌗板等步骤都可能是误差的来源(图2)。然而,VSP也不能完全确保手术的准确性。与计算机化手术规划步骤有关的误差存在于许多方面;例如,头部定位,三维数据整合,骨段定位,以及立体光刻格式(STL)的𬌗板制作过程。

图1
图1 双颌手术中间𬌗板的计算机辅助设计/制造(CAD/CAM)制作。(A)将激光扫描的牙列模型数据与锥形束CT数据在虚拟空间中配准。(B)按照手术计划进行上颌重新定位。(C)虚拟制作的中间𬌗板以及3D打印的𬌗板。(D)上下颌复合体的模拟定位。
图2
图2 经典颌架模型外科与虚拟模型外科相关的潜在误差比较。

3D 数据整合和融合中的误差

在同一虚拟空间中整合不同成像技术获取的牙列和骨骼三维数据,用以创建三维虚拟牙-面-骨模型是非常重要的。由于患者通常带有正畸托槽、金属修复体和假牙,其在CBCT图像中引起的金属伪影是一个重要问题[27]。因此,牙列通常用激光表面扫描来记录,然后与骨骼CT扫描进行图像融合。许多已报道的最新技术克服了射线照相中伪影给上下颌牙列整合带来的影响。多重扫描[28,29]、基准标记点[19,30-32]、配准模块[19,33]、表面匹配[34-37]、基于体素的配准[29]或使用多种方法组合的专用算法[38]被提出来提高牙列和骨骼三维数据整合的准确性。目前,在三维规划软件中经常使用点或面配准功能[39]。牙弓信息的STL文件格式是三维仿真软件中常用的格式。

配准过程是:(1)匹配彼此接近的相应参考点,(2)使用基于区域表面的配准(3D & MPR图像),以及(3)验证配准精度(图3)。然而,其他因素仍然需要关注;例如,(I)牙模或口腔内扫描获取与CBCT图像获取之间的时间间隔,因为术前正畸可能引起牙列移动变化;(II)牙模与CBCT咬合关系(正中关系或正中𬌗位)。完美融合配准单个上颌或下颌牙模数据到CBCT并不容易做到,但在目前的技术下,其误差临床尚能接受。

图3
图3 3D牙模数据与三维锥形束ct (CBCT)数据融合配准步骤。构建三维牙-颌骨模型可使用基于一系列点的匹配 (A),基于局部表面的配准(B)。比较原始CBCT图像的骨模型(C),初步将牙弓信息纳入3D CBCT骨结构(D)及最终完成配准的牙-颌骨数据(E)。

虚拟规划过程头位、骨段定位中的误差

头位对于整个虚拟手术规划很重要。垂直向方位参考标志点或咬合平面对于上颌骨段移动尤其重要(图4)。此外,虚拟手术移动的三维参考平面应与手术前后真实头部位置一致。否则无法在3D VSP中完成验证。3D参考平面经常由多个解剖标志点定义,如Frankfort’s平面[40]。自然头位也可用于VSP,但有一定局限性,原因是可重复性较差[41]并且在下颌骨后退[42]或前移手术[43]后会发生改变[43]

图4
图4 头位设置在VSP中非常重要。在开始移动骨块前必须确认患者的头位。规划骨块移动的参考平面在不同患者都各不相同。

在三维虚拟空间中确定头位后,通过裁剪目标结构,清理伪影或不必要的三维结构,进行虚拟截骨,对单个骨段进行分割[11]。在VSP过程中,需要仔细确认中线偏移、上颌侧滚、俯仰、偏转角度的矫正和前后/垂直/横向的矫正。经常使用的商用软件有:SimPlant O&O® (Materialise),Mimics® (Materialise N.V., 鲁汶, 比利时)、Dolphin Imaging ® (Dolphin Imaging and Management Solutions, 查茨沃思,加利福尼亚州,美国),ProplanCMF®(Materialise)以及由个别机构或当地公司开发的各种其他软件程序。根据夏炯等人研究(2015年),建议按照一定的顺序进行 VSP:即首先校正中线,然后是侧滚角和偏转角校正、垂直位置、俯仰位姿和水平位置调整[11]。其他机构建议使用另一种步骤,首先在正视图中从中线和侧滚角度进行横向矫正,然后在侧视图中完成俯仰角度矫正,在最后阶段[44]完成偏转角度矫正。该步骤可根据用户偏好及模块功能在3D虚拟仿真软件中进行修改。

3D VSP的一个有力优势是可以精确可视化骨块的预期位置(图5)。在VSP过程中,很容易识别骨间干扰。手术规划中,可以通过上颌截骨偏转角矫正来控制下颌骨近心端和远心骨段之间的严重骨干扰[44]。例如,对于面部严重不对称的患者,可以计划以上切牙中线为旋转中心进行旋转来矫正𬌗平面。因此,可以预见会在偏斜侧出现明显的骨间隙。如果在这个位置再加上对上颌骨的偏转角矫正,可以减少骨段间隙(图6)。与这种情况恰恰相反,在通过VSP进行上颌骨𬌗平面偏斜矫正时,在首先保证中线位置是正确的,此时进行任意度数的侧滚角矫正有可能引起不需要的偏转角改变。因此,在所有计划的移动完成后,需要对截骨段参考点位置的每个x, y, z坐标再次确认(图7)。VSP可用于预测和处理骨间干扰或间隙,减少手术并发症和手术时间[45]。严重的骨干扰可以通过3D VSP进行术前修正。然而,在虚拟空间中意外的骨移动可能导致手术误差。

图5
图5 3D虚拟空间中的骨段移动。可以在虚拟空间中移动骨段至预期位置(A),并通过3D或MPR图像显示移动位置(B)。
图6
图6 一个完成偏转角矫正的案例。以上颌切牙中线为旋转中心进行上颌𬌗平面偏斜矫正后,偏斜侧会出现明显的骨间隙(A),若增加上颌偏转矫正,则可减少骨间隙(B)。
图7
图7 在上颌𬌗平面矫正中,右侧上抬与左侧下降几乎相同,上颌中切牙中线无变化(A,B)。然而,后方的伴随的偏斜角(Yaw)改变可能是不需要的(B)。

VSP可以避免颌架模型外科潜在的难点[17,46]和基于传统颌架模型外科进行手术的不精确性[47]。例如,当需要上颌骨段下降或一侧上抬对侧下降时,肯定会伴有双侧或单侧磨牙早接触。因此,在传统颌架石膏模型外科中,通过颞下颌关节位置的少量变化来制作中间𬌗板是困难的。然而在虚拟空间中,通过将连接双侧髁突头中心的线居中,可以在虚拟空间中实现下颌自动旋转(图8)。

图8
图8 虚拟旋转下颌来减少骨段间干扰。当计划上颌向下移动(A)时,需要以TMJ为中心旋转下颌骨来制作中间𬌗板(B)。

手术导板和预成型钛板在正颌手术中的精度

关于3D CAD/CAM𬌗板的准确性和可行性有许多报道。它目前是正颌外科手术过程的重要组成部分[6,48-51]

使用手术导板可以准确地将VSP转移到手术室,手术导板可以包括或者不包括𬌗板[52]。手术导板在手术中有两种用途,即截骨和重新定位[53]。目前,利用个性化定制微型钛板作为手术导板显示出良好的手术精度[54-58]。其最大的优势是手术操作时间短,但缺点是这些系统的成本较高[54,56]。此前的报道的结果表明,CAD/CAM手术导板和个性化定制钛板的使用是正颌手术的主要趋势,可以减少定位上颌骨时不必要的操作停顿。

正颌手术VSP 数字化工作流程的内部处理与外包

VSP的三维软件一般安装在医院,手术团队可以在医疗机构内设计手术方案。整个医院都可以通过计算机共享或者网络连接来获取手术规划。住院医师、患者和手术主刀医师都可以轻松地访问3D手术规划。这可以促进对手术病例的深入讨论,并激励大家对疑难病例提出多种意见,从而最大限度地减少可能的失误。医院如果拥有专门用于3D设计和CAD/CAM导板制作的实验室,这对外科医师来说是最有利的。但考虑到3D实验室在聘请专家方面存在的各种障碍以及运营和管理成本,很多机构都选择了外包VSP工作。

在正颌手术中,CAD/CAM辅助的手术规划通常是与外包第三方供应商一起完成。许多私营公司提供外包VSP服务,如3D system(VSP Orthognathics)[59],Materialise(ProPlan CMF)[60], KLS Martin(IPS CaseDesigner)[13]或其他各个国家或地区的本地公司。在制定手术计划的过程中,外科医师与上述公司的3D技术人员进行协商。在VSP线上会议中,将患者的咬合关系虚拟配准,外科医师确认最终预期的术后咬合位置。截骨形成的骨段根据咬合位置和手术计划进行重新定位。因此,线上会议或互动讨论对于减少外科医师和技术人员之间的认知差距是很重要的。

使用外包VSP系统对许多诊所来说具有优势。然而,外包也有其缺点,如加工成本高,手术前交付时间长,以及制造CAD/CAM𬌗板或手术导板需要多次线上会议或电话沟通。因此,学者们建议使用机构内部工作流程完成VSP[61-63]。3D打印模型可以在临床医师所在机构使用商用3D打印机制作,这样可以减少准备阶段和交付时间,还可以用来培训住院医师了解3D加工和模拟。对于外科来说,聘请工作速度快的3D专业技术人员仍然是一个非常困难的事情。

本文所综述的研究质量有限,也可能存在固有的发表偏倚。由于近年来人们对VSP在正颌手术中的应用热情高涨,许多问题并未得到真正的筛查。此外,在以往的文献中,科学证据相对较少,设计良好的随机对照数据也不多。在未来,需要使用更客观的纳入/排除标准和大量数据来进行研究。


总结

在数字技术时代,VSP在正颌手术中起着重要的作用。VSP是外科手术的一个机遇,而不是一个风险因素,因为有显著的证据表明,VSP可以减少术前准备时间、减少手术时间、提高手术准确性和从业人员的满意度。计算机手术规划的最新进展对治疗牙颌面畸形患者的外科医师来说是非常重要的。了解优点与不足、成本和时间效率,可以增强对VSP发展趋势的理解,并能确定各个医疗机构的最佳选择。

目前,许多机构使用外包公司进行VSP。这有暴露患者信息和知识资源的内在风险。这些患者信息也与开发更好的VSP有重要的关系。此外,VSP步骤的所有质量保证都依赖于第三方,因此在手术结果的责任确定方面存在灰色地带。为了克服外包VSP的问题,医疗机构内部制定手术计划被认为是最易于沟通和减少成本和时间的VSP规划。然而,这需要根据不同医疗机构的具体情况做出决定。

由于在3D规划和模拟中有许多因素影响精度,外科医师需要意识到 VSP 无法自动确保手术结果的成功。每一步都可能产生误差。将三维牙列与颅骨数据整合、骨块确认与移动、计算机辅助手术模拟与𬌗板制作、三维图像叠加以及咬合位置确认都是需要考虑的因素。无论采用内部或外包制定虚拟手术计划,全面理解VSP过程误差来源都是正颌手术成功完成的重要保证。


Acknowledgments

Funding: None.


Footnote

Reporting Checklist: The authors have completed the Narrative Review reporting checklist. Available at https://fomm.amegroups.org/article/view/10.21037/fomm-20-54/rc

Conflicts of Interest: All authors have completed the ICMJE uniform disclosure form (available at https://fomm.amegroups.org/article/view/10.21037/fomm-20-54/coif). TGK serves as an unpaid editorial board member of Frontiers of Oral and Maxillofacial Medicine from Apr 2020 to Mar 2022. The other authors have no conflicts of interest to declare.

Ethical Statement: The authors are accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Open Access Statement: This is an Open Access article distributed in accordance with the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International License (CC BY-NC-ND 4.0), which permits the non-commercial replication and distribution of the article with the strict proviso that no changes or edits are made and the original work is properly cited (including links to both the formal publication through the relevant DOI and the license). See: https://creativecommons.org/licenses/by-nc-nd/4.0/.


References

  1. Swennen GR, Mollemans W, Schutyser F. Three-dimensional treatment planning of orthognathic surgery in the era of virtual imaging. J Oral Maxillofac Surg 2009;67:2080-92. [Crossref] [PubMed]
  2. Xia JJ, Shevchenko L, Gateno J, et al. Outcome study of computer-aided surgical simulation in the treatment of patients with craniomaxillofacial deformities. J Oral Maxillofac Surg 2011;69:2014-24. [Crossref] [PubMed]
  3. Borba AM, Haupt D, de Almeida Romualdo LT, et al. How Many Oral and Maxillofacial Surgeons Does It Take to Perform Virtual Orthognathic Surgical Planning? J Oral Maxillofac Surg 2016;74:1807-26. [Crossref] [PubMed]
  4. Xia J, Ip HH, Samman N, et al. Three-dimensional virtual-reality surgical planning and soft-tissue prediction for orthognathic surgery. IEEE Trans Inf Technol Biomed 2001;5:97-107. [Crossref] [PubMed]
  5. Xia J, Ip HH, Samman N, et al. Computer-assisted three-dimensional surgical planning and simulation: 3D virtual osteotomy. Int J Oral Maxillofac Surg 2000;29:11-7. [Crossref] [PubMed]
  6. Haas OL Jr, Becker OE, de Oliveira RB. Computer-aided planning in orthognathic surgery-systematic review. Int J Oral Maxillofac Surg 2014;44:329-42. [Crossref] [PubMed]
  7. Stokbro K, Aagaard E, Torkov P, et al. Virtual planning in orthognathic surgery. Int J Oral Maxillofac Surg 2014;43:957-65. [Crossref] [PubMed]
  8. Schendel SA. Computer simulation in the daily practice of orthognathic surgery. Int J Oral Maxillofac Surg 2015;44:1451-6. [Crossref] [PubMed]
  9. Shaheen E, Shujaat S, Saeed T, et al. Three-dimensional planning accuracy and follow-up protocol in orthognathic surgery: a validation study. Int J Oral Maxillofac Surg 2019;48:71-6. [Crossref] [PubMed]
  10. Zinser MJ, Mischkowski RA, Sailer HF, et al. Computer-assisted orthognathic surgery: feasibility study using multiple CAD/CAM surgical splints. Oral Surg Oral Med Oral Pathol Oral Radiol 2012;113:673-87. [Crossref] [PubMed]
  11. Xia JJ, Gateno J, Teichgraeber JF, et al. Algorithm for planning a double-jaw orthognathic surgery using a computer-aided surgical simulation (CASS) protocol. Part 1: planning sequence. Int J Oral Maxillofac Surg 2015;44:1431-40. [Crossref] [PubMed]
  12. Xue C, Xu H, Tian Y, et al. Precise control of maxillary multidirectional movement in Le Fort I osteotomy using a surgical guiding device. Br J Oral Maxillofac Surg 2018;56:797-804. [Crossref] [PubMed]
  13. Rückschloß T, Ristow O, Muller M, et al. Accuracy of patient-specific implants and additive-manufactured surgical splints in orthognathic surgery - A three-dimensional retrospective study. J Craniomaxillofac Surg 2019;47:847-53. [Crossref] [PubMed]
  14. Kraeima J, Schepers RH, Spijkervet FKL, et al. Splintless surgery using patient-specific osteosynthesis in Le Fort I osteotomies: a randomized controlled multicentre trial. Int J Oral Maxillofac Surg 2020;49:454-60. [Crossref] [PubMed]
  15. Zhang N, Liu S, Hu Z, et al. Accuracy of virtual surgical planning in two-jaw orthognathic surgery: comparison of planned and actual results. Oral Surg Oral Med Oral Pathol Oral Radiol 2016;122:143-51. [Crossref] [PubMed]
  16. Cousley RRJ, Bainbridge M, Rossouw PE. The accuracy of maxillary positioning using digital model planning and 3D printed wafers in bimaxillary orthognathic surgery. J Orthod 2017;44:256-67. [Crossref] [PubMed]
  17. Kwon TG, Choi JW, Kyung HM, et al. Accuracy of maxillary repositioning in two-jaw surgery with conventional articulator model surgery versus virtual model surgery. Int J Oral Maxillofac Surg 2014;43:732-8. [Crossref] [PubMed]
  18. Ritto FG, Schmitt ARM, Pimentel T, et al. Comparison of the accuracy of maxillary position between conventional model surgery and virtual surgical planning. Int J Oral Maxillofac Surg 2018;47:160-6. [Crossref] [PubMed]
  19. McCormick SU, Drew SJ. Virtual model surgery for efficient planning and surgical performance. J Oral Maxillofac Surg 2011;69:638-44. [Crossref] [PubMed]
  20. Posnick JC, Adachie A, Choi E. Segmental Maxillary Osteotomies in Conjunction With Bimaxillary Orthognathic Surgery: Indications - Safety - Outcome. J Oral Maxillofac Surg 2016;74:1422-40. [Crossref] [PubMed]
  21. Ismail M, Wessel J, Farrell B. Maintenance of Segmental Maxillary Expansion: The Use of Custom, Virtually Designed, and Manufactured Palatal Appliances Without the Use of an Occlusal Splint. J Oral Maxillofac Surg 2019;77:1468.e1-1468.e8. [Crossref] [PubMed]
  22. Kwon TG, Miloro M, Han MD. How Accurate Is 3-Dimensional Computer-Assisted Planning for Segmental Maxillary Surgery? J Oral Maxillofac Surg 2020;78:1597-608. [Crossref] [PubMed]
  23. Stokbro K, Aagaard E, Torkov P, et al. Surgical Splint Design Influences Trans-verse Expansion in Segmental Maxillary Osteotomies. J Oral Maxillofac Surg 2017;75:1249-56. [Crossref] [PubMed]
  24. Tankersley AC, Nimmich MC, Battan A, et al. Comparison of the Planned Ver-sus Actual Jaw Movement Using Splint-Based Virtual Surgical Planning: How Close Are We at Achieving the Planned Outcomes? J Oral Maxillofac Surg 2019;77:1675-80. [Crossref] [PubMed]
  25. Cevidanes LH, Tucker S, Styner M, et al. Three-dimensional surgical simulation. Am J Orthod Dentofacial Orthop 2010;138:361-71. [Crossref] [PubMed]
  26. Hsu PJ, Denadai R, Pai BCJ, et al. Outcome of facial contour asymmetry after conventional two-dimensional versus computer-assisted three-dimensional planning in cleft orthognathic surgery. Sci Rep 2020;10:2346. [Crossref] [PubMed]
  27. Plooij JM, Maal TJ, Haers P, et al. Digital three-dimensional image fusion processes for planning and evaluating orthodontics and orthognathic surgery. A systematic review. Int J Oral Maxillofac Surg 2011;40:341-52. [Crossref] [PubMed]
  28. Swennen GR, Barth EL, Eulzer C, et al. The use of a new 3D splint and double CT scan procedure to obtain an accurate anatomic virtual augmented model of the skull. Int J Oral Maxillofac Surg 2007;36:146-52. [Crossref] [PubMed]
  29. Swennen GR, Mollemans W, De Clercq C, et al. A cone-beam computed tomography triple scan procedure to obtain a three-dimensional augmented virtual skull model appropriate for orthognathic surgery planning. J Craniofac Surg 2009;20:297-307. [Crossref] [PubMed]
  30. Gateno J, Xia J, Teichgraeber JF, et al. A new technique for the creation of a computerized composite skull model. J Oral Maxillofac Surg 2003;61:222-7. [Crossref] [PubMed]
  31. Uechi J, Tsuji Y, Konno M, et al. Generation of virtual models for planning orthognathic surgery using a modified multimodal image fusion technique. Int J Oral Maxillofac Surg 2015;44:462-9. [Crossref] [PubMed]
  32. Bobek S, Farrell B, Choi C, et al. Virtual surgical planning for orthognathic surgery using digital data transfer and an intraoral fiducial marker: the charlotte meth-od. J Oral Maxillofac Surg 2015;73:1143-58. [Crossref] [PubMed]
  33. Sun Y, Luebbers HT, Agbaje JO, et al. Accuracy of upper jaw positioning with intermediate splint fabrication after virtual planning in bimaxillary orthognathic surgery. J Craniofac Surg 2013;24:1871-6. [Crossref] [PubMed]
  34. Lin HH, Chiang WC, Lo LJ, et al. Artifact-resistant superimposition of digital dental models and cone-beam computed tomography images. J Oral Maxillofac Surg 2013;71:1933-47. [Crossref] [PubMed]
  35. Nkenke E, Zachow S, Benz M, et al. Fusion of computed tomography data and optical 3D images of the dentition for streak artefact correction in the simulation of orthognathic surgery. Dentomaxillofac Radiol 2004;33:226-32. [Crossref] [PubMed]
  36. Kim BC, Lee CE, Park W, et al. Integration accuracy of digital dental models and 3-dimensional computerized tomography images by sequential point- and surface-based markerless registration. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2010;110:370-8. [Crossref] [PubMed]
  37. Noh H, Nabha W, Cho JH, et al. Registration accuracy in the integration of laser-scanned dental images into maxillofacial cone-beam computed tomography images. Am J Orthod Dentofacial Orthop 2011;140:585-91. [Crossref] [PubMed]
  38. de Waard O, Baan F, Verhamme L, et al. A novel method for fusion of intra-oral scans and cone-beam computed tomography scans for orthognathic surgery planning. J Craniomaxillofac Surg 2016;44:160-6. [Crossref] [PubMed]
  39. Park JH, Hwang CJ, Choi YJ, et al. Registration of digital dental models and cone-beam computed tomography images using 3-dimensional planning software: Comparison of the accuracy according to scanning methods and software. Am J Orthod Dentofacial Orthop 2020;157:843-51. [Crossref] [PubMed]
  40. Zhu S, Keeling A, Hsung TC, et al. The difference between registered natural head position and estimated natural head position in three dimensions. Int J Oral Maxillofac Surg 2018;47:276-82. [Crossref] [PubMed]
  41. Yang HJ, Han JJ, Hwang SJ. Accuracy of 3D reproduction of natural head position using three different manual reorientation methods compared to 3D software. J Craniomaxillofac Surg 2018;46:1625-30. [Crossref] [PubMed]
  42. Cho D, Choi DS, Jang I, et al. Changes in natural head position after orthognathic surgery in skeletal Class III patients. Am J Orthod Dentofacial Orthop 2015;147:747-54. [Crossref] [PubMed]
  43. Lin X, Edwards SP. Changes in natural head position in response to mandibular advancement. Br J Oral Maxillofac Surg 2017;55:471-5. [Crossref] [PubMed]
  44. Lonic D, Pai BC, Yamaguchi K, et al. Computer-Assisted Orthognathic Surgery for Patients with Cleft Lip/Palate: From Traditional Planning to Three-Dimensional Surgical Simulation. PLoS One 2016;11:e0152014. [Crossref] [PubMed]
  45. Valls-Ontañón A, Ascencio-Padilla RDJ, Vela-Lasagabaster A, et al. Relevance of 3D virtual planning in predicting bony interferences between distal and proximal fragments after sagittal split osteotomy. Int J Oral Maxillofac Surg 2020;49:1020-8. [Crossref] [PubMed]
  46. Hsu SS, Gateno J, Bell RB, et al. Accuracy of a computer-aided surgical simulation protocol for orthognathic surgery: a prospective multicenter study. J Oral Maxillofac Surg 2013;71:128-42. [Crossref] [PubMed]
  47. Lartizien R, Zaccaria I, Noyelles L, et al. Quantification of the inaccuracy of conventional articulator model surgery in Le Fort 1 osteotomy: evaluation of 30 patients controlled by the Orthopilot((R)) navigation system. Br J Oral Maxillofac Surg 2019;57:672-7. [Crossref] [PubMed]
  48. Metzger MC, Hohlweg-Majert B, Schwarz U, et al. Manufacturing splints for orthognathic surgery using a three-dimensional printer. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2008;105:e1-7. [Crossref] [PubMed]
  49. Choi JY, Song KG, Baek SH. Virtual model surgery and wafer fabrication for orthognathic surgery. Int J Oral Maxillofac Surg 2009;38:1306-10. [Crossref] [PubMed]
  50. Bai S, Bo B, Bi Y, et al. CAD/CAM surface templates as an alternative to the intermediate wafer in orthognathic surgery. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2010;110:e1-7. [Crossref] [PubMed]
  51. Chin SJ, Wilde F, Neuhaus M, et al. Accuracy of virtual surgical planning of or-thognathic surgery with aid of CAD/CAM fabricated surgical splint-A novel 3D ana-lyzing algorithm. J Craniomaxillofac Surg 2017;45:1962-70. [Crossref] [PubMed]
  52. Zinser MJ, Sailer HF, Ritter L, et al. A paradigm shift in orthognathic surgery? A comparison of navigation, computer-aided designed/computer-aided manufactured splints, and "classic" intermaxillary splints to surgical transfer of virtual orthognathic planning. J Oral Maxillofac Surg 2013;71:2151.e1-21. [Crossref] [PubMed]
  53. Li B, Zhang L, Sun H, et al. A novel method of computer aided orthognathic surgery using individual CAD/CAM templates: a combination of osteotomy and repositioning guides. Br J Oral Maxillofac Surg 2013;51:e239-44. [Crossref] [PubMed]
  54. Heufelder M, Wilde F, Pietzka S, et al. Clinical accuracy of wafer less maxillary positioning using customized surgical guides and patient specific osteosynthesis in bimaxillary orthognathic surgery. J Craniomaxillofac Surg 2017;45:1578-85. [Crossref] [PubMed]
  55. Brunso J, Franco M, Constantinescu T, et al. Custom-Machined Miniplates and Bone-Supported Guides for Orthognathic Surgery: A New Surgical Procedure. J Oral Maxillofac Surg 2016;74:1061.e1-1061.e12. [Crossref] [PubMed]
  56. Hanafy M, Akoush Y, Abou-ElFetouh A, et al. Precision of orthognathic digital plan transfer using patient-specific cutting guides and osteosynthesis versus mixed analogue-digitally planned surgery: a randomized controlled clinical trial. Int J Oral Maxillofac Surg 2020;49:62-8. [Crossref] [PubMed]
  57. Mazzoni S, Bianchi A, Schiariti G, et al. Computer-aided design and computer-aided manufacturing cutting guides and customized titanium plates are useful in up-per maxilla waferless repositioning. J Oral Maxillofac Surg 2015;73:701-7. [Crossref] [PubMed]
  58. Kraeima J, Jansma J, Schepers RH. Splintless surgery: does patient-specific CAD-CAM osteosynthesis improve accuracy of Le Fort I osteotomy? Br J Oral Maxillofac Surg 2016;54:1085-9. [Crossref] [PubMed]
  59. Gray R, Gougoutas A, Nguyen V, et al. Use of three-dimensional, CAD/CAM-assisted, virtual surgical simulation and planning in the pediatric craniofacial population. Int J Pediatr Otorhinolaryngol 2017;97:163-9. [Crossref] [PubMed]
  60. Knoops PGM, Borghi A, Breakey RWF, et al. Three-dimensional soft tissue pre-diction in orthognathic surgery: a clinical comparison of Dolphin, ProPlan CMF, and probabilistic finite element modelling. Int J Oral Maxillofac Surg 2019;48:511-8. [Crossref] [PubMed]
  61. Hatamleh MM, Ong J, Hatamleh ZM, et al. Developing an In-house Interdisciplinary Three-Dimensional Service: Challenges, Benefits, and Innovative Health Care Solutions. J Craniofac Surg 2018;29:1870-5. [Crossref] [PubMed]
  62. Marschall JS, Dutra V, Flint RL, et al. In-House Digital Workflow for the Management of Acute Mandible Fractures. J Oral Maxillofac Surg 2019;77:2084.e1-2084.e9. [Crossref] [PubMed]
  63. Abo Sharkh H, Makhoul N. In-House Surgeon-Led Virtual Surgical Planning for Maxillofacial Reconstruction. J Oral Maxillofac Surg 2020;78:651-60. [Crossref] [PubMed]
译者介绍
史雨林
空军军医大学口腔医院,空军军医大学口腔医院颌面创伤正颌外科在读博士,主治医师,发表论文10余篇,完成全国首批颌面外科专科医师培训,参与颅颌面外科各类手术2000余台,擅长牙颌面畸形的正颌外科手术治疗,面部轮廓整形重塑,数字化技术在颌面外科应用。(更新时间:2022-06-10)
审校介绍
于洪波
上海交通大学医学院附属第九人民医院主任医师,硕士生导师
主要从事颌面部畸形、缺损的整复;颌骨发育、再生及生物材料;数字化外科等工作。现任国际AO内固定(AO/ASIF)协会讲师;中华口腔医学会口腔生物医学专业委员会委员;中华医学会数字医学分会委员;上海市口腔医学会口腔颌面外科专业委员会常委、兼学术秘书;口腔基础医学专业委员会委员。主持科研项目14项,专利授权8项,第一作者或通讯作者发表论文60余篇,SCI收录36篇,参编专著7部。IJOMS、Journal of Biomaterials Science等杂志reviewer。获得上海市科技进步二等奖、华夏医学奖二等奖各1项,上海市浦江人才计划等资助。(更新时间:2022-06-10)

(本译文仅供学术交流,实际内容请以英文原文为准。)

doi: 10.21037/fomm-20-54
Cite this article as: Kwon TG, Lee ST, Choi SY, Kim JW. Considerations for virtual surgical planning and simulation in orthognathic surgery—a narrative review. Front Oral Maxillofac Med 2020;2:27.

Download Citation